Investigação sobre o efeito de ruído na generalização de redes neurais sem peso em problemas de classificação binária

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Ferreira de Oliveira Neto, Rosalvo
Orientador(a): Jorge Leitão Adeodato, Paulo
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/2115
Resumo: Redes neurais com neurônios baseados em memória RAM (random access memory) são caracterizadas por serem implementáveis em hardware e por serem uma opção atraente na solução de problemas definidos em espaço de entradas binárias. No entanto, para problemas definidos no espaço de entradas reais, existe uma tarefa difícil que é encontrar a representação adequada desses valores, sem perder o poder de generalização em tarefas de classificação de padrões. Este trabalho investiga a utilização de ruído gaussiano aditivo nas variáveis de entradas continuas para aumentar o poder de generalização da rede. Dessa forma uma maior quantidade de posições de memória pode ser treinada , formando uma região de vizinhança comum para padrões semelhantes, conhecida como bacia de atração. Foram realizadas análises da influência da adição de ruído durante o treinamento do n-tuple classifier, que é um tipo de rede booleana, onde se pôde comprovar que o treinamento com ruído aumenta o poder de generalização da rede. O desempenho do modelo investigado foi comparado com resultados obtidos pela rede neural Multi Layer Perceptron (MLP). Para o estudo foram selecionadas quatro bases de dados públicas, três de um conhecido benchmark da área e outra de recente competição internacional. Resultados experimentais mostram que o modelo investigado obtém desempenho equivalente ao da rede neural MLP para os problemas utilizados