Predição temporal de links baseada na evolução de tríades

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: MELO, Hugo Neiva de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/20829
Resumo: Atualmente, com o crescimento da área de inteligência artificial e devido à necessidade do estudo das redes sociais no mundo virtual, ficou em evidência a importância da análise dessas redes. Existem vários tipos de problemas que podem ser levantados nesse sentido, entre eles, o problema de Predição de Links dentro de uma rede social, tarefa associada à Análise de Redes Sociais. Atualmente as abordagens buscam observar algum tipo de padrão na rede, sendo esses padrões estruturais, de similaridades entre os indivíduos, estatísticos, até modelos mais complexos, como padrões temporais. Este trabalho tem como objetivo propor uma nova metodologia temporal, chamada de Predição Temporal de Links baseada na Evolução de Tríades, de modo a prover uma solução mais satisfatória e computacionalmente viável para o problema de Predição de Links. Para isto, foi criado um novo modelo temporal de dados, chamado de Tensor de Transições de Tríades, que serve de base para o cálculo de modelos de predição temporal estatística de séries temporais. Este modelo foi concebido a partir da análise das principais abordagens vistas na literatura e identificação das suas vantagens e limitações. Os resultados obtidos mostraram que, em relação às abordagens de trabalhos relacionados, houve uma considerável melhora na qualidade da predição ao utilizar o modelo criado.