Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Rocha, Cleilton Lima |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.repositorio.ufc.br/handle/riufc/71284
|
Resumo: |
The vast diffusion of devices equipped with a GPS device has brought the possibility of collecting data related to massive amounts of moving objects on a scale never seen before. During the latest years, such diffusion instigated the development of many different techniques to deal with location prediction problems. Existing works mainly aim at predicting the next location of moving objects by focusing on information in the spatial domain. In this paper we want to take into account information in the temporal domain as well, both to improve the reliability of predictions and to answer not only where a moving object is going to move, but also when an object is expected to leave its current location. To this end we propose Tpred, a framework based on probabilistic suffix trees which tries to capture typical movement patterns of moving objects, and compute reliable predictions accordingly, by exploiting information both in the spatial and temporal domains. In order to prove the validity of our contribution we conduct an extensive set of experimental evaluations, based on real-world datasets and different performance metrics, where we show the efficiency and effectiveness of our proposal. |