Treinando um extrator de características baseado em aprendizado profundo para uso em detecção de anomalias

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: MONTEIRO, Rodrigo de Paula
Orientador(a): BASTOS FILHO, Carmelo José Albanez
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Programa de Pos Graduacao em Engenharia Eletrica
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/43360
Resumo: A detecção de anomalias consiste em identificar padrões que divirjam de comportamen- tos tidos como normais. Ela é uma importante área de estudos, cuja aplicabilidade se estende a diversos domínios, como a segurança de redes de comunicação, a detecção de doenças, a identificação de fraudes, dentre outros. A detecção de anomalias configura-se como uma etapa essencial de processos que envolvem tomadas de decisão, como o planejamento de manutenções em fábricas ou o início do tratamento de doenças graves. Comportamentos anômalos podem ser provocados por erros ou eventos ainda desconhecidos pelo sistema de detecção. A detecção de anomalias apresenta uma série de desafios que a distanciam de problemas de classificação tradicionais. Um deles diz respeito ao desbalanceamento dos dados disponíveis para treinar o modelo de detecção. A inexistência, ou existência em pequenas quantidades, de dados perten- centes às classes anômalas é bastante comum em problemas reais. Isto torna difícil a definição de uma região no espaço amostral que contenha todos os comportamentos normais possíveis, sem compreender os anômalos. Diversas técnicas foram desenvolvidas ao longo dos anos para tratar deste problema. No entanto, um grupo de técnicas ganhou atenção especial da comunidade acadêmica. Tal grupo baseia-se no uso de aprendizado profundo. Este consiste no processamento da informação através de múltiplas camadas, tornando possível a obtenção de representações mais significativas da informação de entrada para um dado problema de classificação ou re- gressão. Apesar dos avanços obtidos, o uso de aprendizado profundo na detecção de anomalias ainda apresenta algumas dificuldades, principalmente na obtenção de características capazes de representar de forma satisfatória a classe normal, ao mesmo tempo em que a diferencie da classe anômala. Este trabalho apresenta as etapas do desenvolvimento de um sistema para a detecção de anomalias baseado na atuação conjunta de técnicas profundas e tradicionais de aprendizado de máquina. As primeiras abordagens analisadas consistiram de algoritmos treinados de forma supervisionada, supondo-se que todas as classes anômalas eram conhecidas, visando promover um melhor entendimento acerca do problema. Em seguida, partiu-se para as abordagens nas quais o treinamento do algoritmo foi realizado apenas com dados pertencentes à classe normal. Dentre as técnicas propostas na tese, a de resultado mais promissor envolveu o treinamento do extrator de características baseado em aprendizado profundo conjuntamente com um processo de seleção de protótipos. A técnica apresentou valores médios de AUC relativamente altos e estáveis, e.g., acima de 0,95, para um nicho de problemas de detecção de anomalias. Todos os modelos treinados foram avaliados com bases de dados compostas por espectrogramas de sinais sonoros e de vibração, coletados por sensores posicionados em dispositivos eletromecânicos.