Meta aprendizado para detecção de anomalias em imagens

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: COSTA, Esdras Souto
Orientador(a): VASCONCELOS, Germano Crispim
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Programa de Pos Graduacao em Ciencia da Computacao
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/45616
Resumo: A detecção de anomalias é uma tarefa relevante em diversos problemas do mundo real, com aplicação em diversas áreas e setores do mercado, como medicina, segurança, finanças, monitoramento, controle de ambientes, inspeção industrial, entre outros. Como exemplos, algumas situações enfrentadas diariamente em que algo pode ser ‘anormal’ ou fora do comum são acidentes de trânsito, detecção de doenças, fraudes em transações de cartão de crédito e assim por diante. Trata-se de um problema desafiador, uma vez que a definição de ‘anomalia’ é ambígua, ou seja, qualquer evento que não esteja em conformidade com um padrão de comportamento considerado normal pode ser visto como uma anomalia. Apesar de avanços em trabalhos recentes na detecção automática de anomalias assim como na área de Redes Neurais Profundas, tais modelos ainda demandam uma grande quantidade de dados para que se tire proveito de sua expressividade e desempenho. Sendo assim, o presente trabalho apresenta uma nova abordagem para a detecção semi-supervisionada de anomalias em imagens, quando somente amostras sem anomalias estão disponíveis e são consideradas no treinamento dos modelos. Além disso, considera-se como motivação cenários onde não há abundância de dados e apenas uma quantidade pequena de amostras está disponível para o treinamento. Usando técnicas de meta-aprendizado, em particular MAML, a abordagem proposta é comparada com outros algoritmos estado-da-arte na base de dados MVTec-AD, demonstrando resultados superiores em 29 dos 45 casos avaliados nas tarefas de detecção de anomalias em objetos e texturas nunca vistos em treinamento.