Detalhes bibliográficos
Ano de defesa: |
2007 |
Autor(a) principal: |
Wilson Dantas de Almeida, Carlos |
Orientador(a): |
Maria Cardoso Rodrigues de Souza, Renata |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/2634
|
Resumo: |
Nos últimos anos, têm-se registrado um crescente interesse e popularização de imagens digitais, através de dispositivos tais como câmeras digitais, celulares, webcam ou filmadoras digitais. Com a grande quantidade de informação visual disponível, cresce a dificuldade do usuário em recuperar essas informações de forma precisa e eficiente. Atualmente, existem inúmeros mecanismos de busca baseados em descrições textuais ou keywords. No entanto, existem grandes dificuldades nessa abordagem, (i ) o trabalho manual requerido para notação das imagens e (ii ) a subjetividade para essa notação. Devido a essas e outras dificuldades, os mecanismos de busca baseado em keywords geram uma grande quantidade de respostas não relevantes. Nesse contexto, grandes esforços têm sido feito na área de recuperação de imagens baseados em conteúdo, de forma a tornar esse tipo de conteúdo mais acessível aos seus usuários. A proposta geral para a dissertação é desenvolver uma nova estratégia de recuperação de imagens baseada na forma, utilizando o descritor de forma Curvature Scale Space (CSS) e Mapas Auto-Organizáveis (SOM) para descrever, classificar, indexar e recuperar imagens. Essa nova abordagem possibilita a realização de consultas por similaridade levando em consideração a semelhança entre o contorno fechado dos objetos pesquisados. As características dos objetos são representados através de uma imagem multi-escalar CSS e pr´e-processados, constituindo em dados que serão usados como treinamento da rede SOM. Nesse estudo, avaliamos a acurácia e o tempo de busca através de uma base benchmark denominada Core Experiment (CE-1B). Utilizamos variações dessa base para analisar o desempenho sobre transformações geométricas de escala, rotação e translação. Os resultados obtidos mostram que a combinação do descritor CSS e SOM representa uma estratégia promissora para recuperação de imagens, com uma alta performance de tempo |