Detalhes bibliográficos
Ano de defesa: |
2012 |
Autor(a) principal: |
Lopes Junior, Petrônio Gomes |
Orientador(a): |
Sadok, Djamel Fawzi Hadj |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/2841
|
Resumo: |
Existem diversos tipos de aplicações de redes de computadores que produzem diferentes perfis de tráfego. Para aperfeiçoar o desempenho destas aplicações ou da rede em que elas estão incluídas, é interessante fazer medições e caracterizações do tráfego gerado por elas. Nesse contexto, existem várias formas para classificação de tráfego como técnicas baseadas em portas, técnicas baseadas em inspeção de pacotes e técnicas baseadas em fluxos. De acordo com o cenário em que será aplicada, cada uma das técnicas apresenta vantagens e desvantagens. Adicionalmente, a classificação tem que lidar com restrições de tempo, sendo capaz de tratar os dados em tempo real. Um possível método a ser utilizado é a classificação de tráfego baseada em fluxos utilizando aprendizagem de máquina. No entanto, é notório que, quando se fala na classificação de fluxos usando aprendizagem de máquina, a caracterização de tráfego ainda necessita de uma abordagem que seja capaz de fornecer uma forma adaptativa de treinamento além de equilibrar precisão e desempenho em um cenário de fluxo contínuo de dados. Este trabalho apresenta um algoritmo voltado para classificação do tráfego baseado em técnicas de mineração de fluxos de dados aplicado a redes de alta velocidade, denominado GSDT (GPU-based Streaming Decision Tree), além de um arcabouço para sua aplicação. Esse algoritmo visa combinar a precisão das árvores de decisão tradicionais com as características da mineração de fluxos de dados. O GSDT também explora o potencial computacional fornecido por uma unidade de processamento gráfico. O arcabouço proposto alia treinamento e classificação, a fim de obter ganhos no desempenho da utilização do algoritmo em um ambiente real. Os experimentos realizados avaliam a precisão do GSDT em relação às técnicas tradicionais e o desempenho das abordagens propostas, demonstrando a viabilidade da aplicação do GSDT nos cenários considerados e a alta performance obtida através da unidade de processamento gráfico |