Seleção Ativa de Exemplos de Treinamento para Meta-Aprendizado

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Sousa, Arthur Fernandes Minduca de
Orientador(a): Prudêncio, Ricardo Bastos Cavalcante
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/11584
Resumo: Várias abordagens têm sido aplicadas à tarefa de seleção de algoritmos. Nesse contexto, Meta-Aprendizado surge como uma abordagem eficiente para predizer o desempenho de algoritmos adotando uma estratégia supervisionada. Os exemplos de treinamento de Meta-Aprendizado (ou meta-exemplos) são construídos a partir de um repositório de instâncias de problemas (como, por exemplo, um repositório de bases de dados de classificação). Cada meta-exemplo armazena características descritivas de uma instância de problema e um rótulo indicando o melhor algoritmo para o problema (empiricamente identificado entre um conjunto de algoritmos candidatos). Os melhores algoritmos para novos problemas podem ser preditos se baseando apenas em suas características descritivas, sem a necessidade de qualquer avaliação empírica adicional dos algoritmos candidatos. Apesar dos resultados Meta-Aprendizado requererem a implementação de um número suficiente de instâncias de problemas para produzir um conjunto rico de meta-exemplos. Abordagens recentes para gerar conjuntos de dados sintéticos ou manipulado foram adotados com sucesso no contexto de Meta-Aprendizado. Essas propostas incluem a abordagem de Datasetoids, que é uma técnica simples de manipulação de dados que permite a geração de novos conjuntos de dados a partir de bases existentes. Apesar dessas propostas produzirem dados relevantes para Meta-Aprendizado, eles podem eventualmente produzir instâncias de problemas redundantes ou até mesmo irrelevantes. Meta-Aprendizado Ativo surge nesse contexto para selecionar somente as instâncias mais informativas para a geração de meta-exemplos. Neste trabalho, investigamos o uso de Meta- Aprendizado Ativo combinado com Datasetoids, focando no uso do algoritmo Random forest em Meta-Aprendizado. Para selecionar as instâncias de problemas, implementamos um critério de incerteza baseado em entropia, específico para o Random forest. Também investigamos o uso de uma técnica de detecção de outliers a fim de remover a priori os problemas considerados outliers, objetivando melhorar o desempenho dos métodos de Aprendizagem Ativa. Nossos experimentos revelaram uma melhora no desempenho do Meta-Aprendizado e uma redução no custo computacional para a geração de meta-exemplos.