Detalhes bibliográficos
Ano de defesa: |
2008 |
Autor(a) principal: |
Seabra Melo e Santos, Gabriela |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/5243
|
Resumo: |
Este trabalho se propõe a apresentar uma metodologia para classificar o nível de poluição presente na superfície dos isoladores aéreos de alta tensão, ou seja, diagnosticar o estado do isolamento do sistema elétrico de transmissão através da técnica de reconhecimento de padrões dos sinais de ultra-som emitidos por descargas superficiais nos isoladores a serem classificados via Redes Neurais Artificiais (RNA). Visando este objetivo, foram utilizadas neste trabalho técnicas de extração de atributos dos sinais de entrada da RNA visando viabilizar a execução computacional do treinamento e simulação da rede. Pode-se citar como técnicas de extração utilizadas: o Centróide, Parâmetros Estatísticos e no Domínio da Freqüência. Na aplicação das RNA além da Rede Perceptrons de Múltiplas Camadas (MLP), também foi simulada a Rede de Funções de Bases Radiais (RBF) com o objetivo de realizar uma análise comparativa dos resultados das redes na montagem de processos de classificação, utilizando a técnica de extração de atributos que resultou um melhor desempenho para as redes MLP |