Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
PETRI, Lucas de Paula Santos
 |
Orientador(a): |
WANDERLY NETO, Estácio Tavares
 |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Itajubá
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação: Mestrado - Engenharia Elétrica
|
Departamento: |
IESTI - Instituto de Engenharia de Sistemas e Tecnologia da Informação
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.unifei.edu.br/jspui/handle/123456789/2236
|
Resumo: |
O presente estudo utiliza redes neurais artificiais, uma ferramenta de aprendizado de máquina – subárea da inteligência artificial –, para a classificação de sinais de descargas parciais em isoladores de alta tensão. Além disso, estes sinais também são analisados por meio de implementações em linguagem de programação Python, visando a definição de um grau de severidade da atividade de descargas parciais por meio de um sistema de inferência fuzzy. O caso de estudo deste trabalho é a cidade de São Luís, capital do estado do Maranhão, cujo sistema elétrico está sob concessão da Equatorial Energia. A área de serviço da concessionária compreende um sistema de transmissão de 69 kV, cujas estruturas empregam, em sua maioria, isoladores compostos do tipo pilar ou suspensão. As descargas parciais, além de provocarem a degradação da superfície polimérica dos isoladores, podem evoluir para arcos mais extensos, podendo levar a descargas disruptivas (flashover) que resultem em faltas no sistema e interrupções no fornecimento de energia. A proposta deste trabalho foi o desenvolvimento de algoritmos de aquisição e análise de sinais de descargas parciais para compor um equipamento de inspeção que possa ser utilizado em campo por meio de um sistema software-hardware compacto e portátil e de uma antena para a coleta dos sinais de interferência de radiofrequência oriundos da atividade de descargas. Desta forma, a equipe de manutenção da concessionária terá à disposição uma ferramenta de apoio à decisão para avaliar a condição das estruturas, permitindo o agendamento de rotinas de manutenção preventiva quando necessário, visando prevenir eventos de interrupção no fornecimento de energia. A partir de dados coletados em ensaios em laboratório e em campo, são apresentados resultados que demonstram a coerência dos parâmetros selecionados para o cálculo da severidade. O aumento do grau de severidade é observado com a intensificação da poluição superficial e com a elevação da umidade relativa. |