Uma abordagem multidimensional para OLAM como ferramenta de avaliação de desempenho de modelos de classificação binária

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: SANTOS FILHO, Mailson Melo dos
Orientador(a): ADEODATO, Paulo Jorge Leitão
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Programa de Pos Graduacao em Ciencia da Computacao
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/27670
Resumo: Os sistemas de suporte à decisão são utilizados para auxiliar os gestores na tomada de decisão, inclusive, de alto nível. Eles implementam todas as etapas do processo de extração de conhecimento em banco de dados (KDD - Knowledge-Discovery in Databases) e o ambiente de consultas a dados e conhecimento, incluindo simulação de cenários sobre os indicadores do negócio (KPIs - Key Performance Indicators). As ferramentas OLAP (Online Analytical Processing) oferecem um ambiente para consultas que permite a análise de um grande volume de dados, por meio de cruzamento entre dados, apresentação de perspectiva de processamento multinível (hierarquias) para os dados e funções de perfuração e fatiamento dos conjuntos entre outras. Estas ferramentas têm interface amigável com o decisor humano apresentando gráficos, modelos e sumarizações, mas são limitadas a operações diretas e à validação de conhecimento humano sobre os dados do negócio. No processo de KDD, a mineração de dados usa inteligência artificial e estatística para extração de conhecimento dos dados e para apoiar a decisão humana em atividades de inferência e previsão. OLAM (Online Analytical Mining) é um conceito equivalente ao OLAP para navegação sobre o conhecimento extraído e sobre o efeito da sua aplicação na tomada de decisões sobre o desempenho do negócio tanto nos indicadores técnicos de inteligência artificial quanto nos KPIs. No entanto, não foi encontrado ferramental genérico que permita realizar de forma sistemática o OLAM. A proposta desse trabalho é mostrar que algumas operações fundamentais de OLAM podem ser implementadas por meio de ferramentas OLAP, mediante amostragem de dados com independência estatística submetidos à mineração e a certas transformações de dados. O trabalho é validado por meio de um problema de decisão binária, no qual a resposta do algoritmo de mineração de dados (escore de propensão) sobre a massa de dados estatisticamente independente passa a ser uma medida no data warehouse. O trabalho demonstra que essa abordagem permite a geração de cubos associado à classe-alvo e aos KPIs para avaliação de desempenho, tornando a ferramenta OLAP capaz de realizar OLAM. Ao final, o trabalho analisa as principais limitações das ferramentas OLAP que as impede de implementar OLAM com mais flexibilidade e as implicações conceituais e operacionais para serem superadas.