Classificação de uma classe para seleção de conjuntos de dados sintéticos em meta-aprendizado

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: PARENTE, Regina Rosa
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/45450
Resumo: A seleção de algoritmos é uma tarefa crucial e desafiadora no aprendizado de máquina em diferentes domínios do conhecimento. O meta-aprendizado trata a seleção de algoritmos como uma tarefa de aprendizado supervisionado. Exemplos de treinamento (ou seja, meta-exemplos) são gerados a partir de experimentos realizados com um conjunto de algoritmos candidatos em vários conjuntos de dados. Pode haver uma pequena disponibilidade de conjuntos de dados reais em alguns domínios, o que torna difícil gerar bons meta-exemplos. Portanto, confiar em conjuntos de dados sintéticos pode ser uma boa alternativa para gerar meta-exemplos. No entanto, não é garantido que todos os conjuntos de dados sintéticos sejam relevantes e representativos em comparação com os conjuntos de dados reais. Desta forma, o uso indiscriminado de muitos conjuntos de dados sintéticos aumenta o custo computacional da realização de experimentos sem melhorar significativamente a acurácia do meta-aprendizado. Nesta tese, lidamos com a seleção de conjuntos de dados sintéticos para meta-aprendizagem como um problema de classificação de uma classe (OCC). Em OCC, os classificadores são construídos assumindo a disponibilidade de exemplos de treinamento pertencentes a uma classe única de interesse (ou seja, a classe positiva), enquanto os rótulos de classe dos outros exemplos são desconhecidos. Na solução proposta, técnicas de OCC são utilizadas para selecionar os conjuntos de dados sintéticos mais relevantes (a classe desconhecida), considerando os conjuntos de dados reais (a classe positiva) disponíveis. Também conduzimos experimentos em dois estudos de caso, nos quais empregamos dois procedimentos diferentes de manipulação de dados para produzir conjuntos de dados sintéticos e duas técnicas de OCC para seleção de conjuntos de dados. Os resultados demonstraram que é possível usar um número reduzido de conjuntos de dados sintéticos selecionados, mantendo um bom desempenho do Meta-Aprendizado.