Dimensão de Hausdorff de fractais auto-afins
Ano de defesa: | 2020 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Pernambuco
UFPE Brasil Programa de Pos Graduacao em Matematica |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufpe.br/handle/123456789/42290 |
Resumo: | Nesse trabalho expomos um método para calcular a dimensão de Hausdorff de frac- tais auto-afins. Inicialmente, discutimos um exemplo mais simples, que são os fractais auto-semelhantes, e demonstramos a Fórmula de Bowen-Manning. Em seguida, abordamos o problema principal desta dissertação: dadas k transformações afins contrativas no ℝn, existe um único conjunto invariante F, que é um fractal auto-afim; o objetivo deste trabalho é calcular a dimensão de Hausdorff de F. Utilizamos a Função Valor Singular como ferramenta para encontrar um valor d(F) candidato a ser a dimensão de Hausdorff de F. Por fim, provamos que a dimensão de Hausdorff de F é, para quase todo ponto, igual a min{d(F), n}, onde n é a dimensão do espaço. |