MAIA : Metamodelo de Accountability para Inteligência Artificial
Ano de defesa: | 2023 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Pernambuco
UFPE Brasil Programa de Pos Graduacao em Ciencia da Computacao |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufpe.br/handle/123456789/51746 |
Resumo: | A inteligência artificial (IA) pode tomar decisões erráticas, causando preconceito, desconfiança, perdas ou danos aos indivíduos. Questões complexas de caráter mo- ral e normativo devem ser dirimidas para estabelecer como determinar accountabi- lity. Até recentemente, entender o funcionamento das “caixas pretas” era extrema- mente difícil; no entanto, o uso de Inteligência Artificial Explicável (XAI) ajuda a acla- rar os problemas complexos que podem incorrer a IA. Neste contexto, esta tese pro- cura analisar, caracterizar e conformar accountability no âmbito da moral e da IA e fornecer um cânone que ajude as várias partes interessadas a lidar com as questões de responsabilidade algorítmica. Para definir accountability, apresentamos, caracte- rizamos e diferenciamos os diversos matizes de responsabilidade no contexto nor- mativo atual, apresentando os dois pressupostos relacionados à accountability mo- ral: exigibilidade e responsividade. Por fim, fornecemos uma análise sobre como a estrutura contábil existente, com o suporte de XAI e dados registrados, pode abordar questões relacionadas à responsabilidade algorítmica da IA. |