Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
PADOVAN, Paulo Henrique |
Orientador(a): |
QUEIROZ, Ruy José Guerra Barretto de |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Programa de Pos Graduacao em Ciencia da Computacao
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/51746
|
Resumo: |
A inteligência artificial (IA) pode tomar decisões erráticas, causando preconceito, desconfiança, perdas ou danos aos indivíduos. Questões complexas de caráter mo- ral e normativo devem ser dirimidas para estabelecer como determinar accountabi- lity. Até recentemente, entender o funcionamento das “caixas pretas” era extrema- mente difícil; no entanto, o uso de Inteligência Artificial Explicável (XAI) ajuda a acla- rar os problemas complexos que podem incorrer a IA. Neste contexto, esta tese pro- cura analisar, caracterizar e conformar accountability no âmbito da moral e da IA e fornecer um cânone que ajude as várias partes interessadas a lidar com as questões de responsabilidade algorítmica. Para definir accountability, apresentamos, caracte- rizamos e diferenciamos os diversos matizes de responsabilidade no contexto nor- mativo atual, apresentando os dois pressupostos relacionados à accountability mo- ral: exigibilidade e responsividade. Por fim, fornecemos uma análise sobre como a estrutura contábil existente, com o suporte de XAI e dados registrados, pode abordar questões relacionadas à responsabilidade algorítmica da IA. |