Processo de renovação generalizado para análise de sistemas reparáveis baseado na distribuição q–Exponencial
Ano de defesa: | 2016 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Pernambuco
UFPE Brasil Programa de Pos Graduacao em Engenharia de Producao |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufpe.br/handle/123456789/18597 |
Resumo: | Este trabalho trata de sistemas reparáveis que sofrem reparo imperfeito, utilizando uma classe de modelos de processos estocásticos conhecida como Processo de Renovação Generalizado (PRG), que é um modelo de idade virtual que determina a classificação do reparo de acordo com o grau de redução que este proporciona sob a idade real do equipamento, mensurada através de um parâmetro de rejuvenescimento, , e este modelo permite inserir uma maior flexibilidade quanto ao tratamento de dados de falhas. Foi proposto um modelo PRG com base na distribuição -Exponencial ( -PRG), onde o sucesso da Exponencial deve-se, em parte, à sua capacidade de exposições a caudas pesadas e fenômenos de lei de potência. Os estimadores de máxima verossimilhança não apresentaram expressões analíticas e, então, a estimação dos parâmetros -PRG foi realizada por meio do algoritmo evolucionário Differential Evolution (DE), que é algoritmo estocástico para resolver problemas de otimização global de funções não lineares, ou seja, é um método para minimizar funções não lineares e não diferenciáveis em um espaço contínuo de busca. Com base no método DE, foram realizadas simulações a partir de dados de falha extraídos da literatura. A partir das simulações executadas utilizando o método bootstrap paramétrico, mesmo existindo valores discrepantes, o processo de simulação manteve as características dos dados iniciais, de modo que informações sobre as falhas não foram perdidas. Com as simulações, concluiu-se que para tamanhos amostrais maiores, as abordagens bootstrap utilizadas tendem a fornecer estimativas intervalares semelhantes para os parâmetros -PRG. Além disso, foi possível obter alguns resultados estatísticos para os estimadores como a ausência de normalidade e estimar o parâmetro de rejuvenescimento do PRG. |