Detalhes bibliográficos
Ano de defesa: |
2007 |
Autor(a) principal: |
GURGEL, Tarcisio Barbosa |
Orientador(a): |
ADEODATO, Paulo Jorge Leitão |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/2699
|
Resumo: |
As primeiras soluções desenvolvidas para a Inteligência Artificial na Medicina eram, na época da sua concepção, unicamente baseadas no conhecimento do especialista, entretanto, o cenário atual, no qual dados são abundantes, mas subutilizados, mostrou-se terreno fértil para a criação de soluções baseadas também nos dados. É onde entra a Mineração de Dados, que tem sido, nos últimos anos, fator contribuinte na criação de ferramentas médicas que têm causado um forte impacto na prestação dos serviços de saúde. Nesse contexto, a proposta deste trabalho é avaliar a Mineração de Dados como meio para conceber um Sistema de Apoio à Decisão que auxilie o processo decisório na Medicina, especificamente na Cardiologia Infantil. Foram utilizadas técnicas de Inteligência Artificial tradicionalmente aplicadas a uma variedade de domínios médicos: Árvores de Decisão e Regras de Classificação, para descrição dos dados; e Redes Neurais Artificiais, para construção de classificadores. O resultado obtido a partir das primeiras técnicas trouxe novos conhecimentos para os médicos envolvidos, especialistas no domínio. Os classificadores criados, por sua vez, mostraram um desempenho satisfatório em duas tarefas distintas: a primeira é classificar os pacientes como saudáveis ou doentes em relação a doenças cardíacas, através de dados de exames de ecocardiogramas; a segunda, identificar, entre os novos pacientes da clínica, e sem a ajuda dos dados de exames clínicos, aqueles mais graves, com alto potencial de serem submetidos a alguma cirurgia cardíaca. A qualidade da solução desenvolvida e a sua aceitação pelos especialistas no domínio mostraram a viabilidade em utilizar a Mineração de Dados no processo de apoio à decisão na Cardiologia Infantil. Entre os potenciais benefícios, estão o maior entendimento da saúde cardíaca da população, e a utilização dos classificadores construídos, para servir como uma segunda opinião médica no momento do diagnóstico e para dar prioridade de atendimento aos pacientes mais graves. Esperase que, com o auxílio dessas ferramentas, haja uma melhoria do serviço médico prestado |