Processo ARMA gama generalizado aplicado a imagens de amplitude e intensidade SAR
Ano de defesa: | 2022 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso embargado |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Pernambuco
UFPE Brasil Programa de Pos Graduacao em Estatistica |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufpe.br/handle/123456789/48495 |
Resumo: | Os problemas de sensoriamento remoto são resolvidos usando imagens de radar de abertura sintética (SAR). Porém, essas imagens sofrem com o ruído speckle, que exige uma certa modelagem de seus atributos (como intensidade e amplitude). É comum trabalhar com abordagens separadas para dados de intensidade e amplitude. Neste trabalho, propomos um novo processo autoregressivo de médias móveis (ARMA) com distribuição marginal Gama Generalizada (GΓ), denominado GΓ-ARMA e conseguimos modelar ambos os atributos com o mesmo modelo. Derivamos algumas de suas propriedades matemáticas: expressões de forma fechada baseadas em momento, função escore e matriz de informação de Fisher. Um procedimento para obter estimativas de máxima verossimilhança dos parâmetros GΓ-ARMA é fornecido e seu desempenho é quantificado e discutido usando experimentos de Monte Carlo, considerando (entre outras) várias funções de ligação. Por fim, a proposta é aplicada a dados reais obtidos de imagens das regiões de Munique e São Francisco. Os resultados demonstram que GΓ-ARMA descreve as vizinhanças dos pixels da imagem SAR melhor do que o processo Γ-ARMA (que é uma referência para dados positivos assimétricos). Ao modelar raios de pixel reais, nossa proposta supera os modelos G 0 I e Γ-ARMA. |