Detalhes bibliográficos
Ano de defesa: |
2012 |
Autor(a) principal: |
PACÍFICO, Luciano Demétrio Santos |
Orientador(a): |
CARVALHO, Francisco de Assis Tenório de |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/10917
|
Resumo: |
Métodos de agrupamento (clustering) visam organizar um conjunto de itens em grupos de tal forma que itens de um dado grupo possuam alto grau de similaridade, enquanto itens em grupos diferentes possuam alto grau de dissimilaridade. A busca por métodos que realizem essa tarefa de forma satisfatória se justifica na grande variedade de aplicações possíveis para a análise de agrupamentos, em campos como processamento de imagens, mineração de dados, ciências sociais, medicina, dentre outros. Este trabalho tem por objetivo a introdução de duas novas técnicas para a realização da tarefa de formação de agrupamentos. As abordagens propostas são algoritmos de mapas autoorganizáveis por lote baseados em distâncias adaptativas: o algoritmo de mapa autoorganizável por lote baseado em distâncias adaptativas globais (GWBSOM) e o algoritmo de mapa auto-organizável por lote baseado em distâncias adaptativas locais (LWBSOM). O mapa auto-organizável (Self-Organizing Map, ou SOM) é uma rede neural artificial não-supervisionada de aprendizado competitivo que possui propriedades de agrupamento e de redução da dimensionalidade, usando uma função de vizinhança para descobrir a estrutura topológica escondida no conjunto de dados. Os testes realizados, tanto com bases de dados reais quanto com bases de dados sintéticos, demonstraram a efetividade dos métodos propostos em relação às abordagens existentes na literatura. |