Otimização evolucionária multimodal de redes neurais artificiais para composição de ensembles

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: MINEU, Nicole Luana
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/2735
Resumo: Esta dissertação apresenta um novo método de otimização de redes neurais artificiais para composição de ensembles de redes neurais artificiais. O método proposto combina o algoritmo evolucionário Evolução Diferencial com Vizinhança Global e Local (DEGL - Differential Evolution with Global and Local Neighborhood) com três técnicas multimodais: fitness sharing, especiação e simple subpopulation scheme. Para uma boa generalização de um ensemble seus componentes devem apresentar duas características: bom desempenho e diversidade. Como o poder de generalização de uma rede neural artificial está intimamente relacionado à sua arquitetura e aos seus pesos iniciais, para atingir bom desempenho, as redes neurais artificiais foram construídas de maneira automática através do algoritmo evolucionário. Para manter a diversidade entre as redes e para que um maior número de soluções ótimas fosse encontrado, técnicas multimodais foram incorporadas ao algoritmo evolucionário. O desempenho deste método é investigado através de experimentos realizados em seis bases benchmarks de aprendizagem de máquina para problemas de classificação. O método proposto se mostrou competitivo quando comparado a outros métodos da literatura e estatisticamente relevante quando comparado a métodos baseados em seus componentes