Mecanismos explicativos para RNAs como extração de conhecimento

Detalhes bibliográficos
Ano de defesa: 2005
Autor(a) principal: CAMPOS, Paulemir Gonçalves
Orientador(a): LUDERMIR, Teresa Bernarda
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/2763
Resumo: As Redes Neurais Artificiais (RNAs), um dos principais modelos de computação em Inteligência Artificial (IA), vêm sendo largamente utilizadas nas diversas abordagens de previsão do comportamento dos dados, por exemplo, em processamento de sinais, reconhecimento de padrões, aproximação de função e também previsão de séries temporais. Isto porque as RNAs englobam muitas características desejáveis como boa capacidade de generalização, não linearidade, multivariáveis, não paramétricas, dentro de um esquema de implementação relativamente eficiente em termos de velocidade e exigência de memória computacional. Apesar do grande uso de RNAs para resolver vários tipos de problemas apresentando bom desempenho, o usuário geralmente quer entender como e porque a rede obteve uma dada saída em relação à entrada que lhe foi apresentada. Ou seja, a incapacidade de explicar como e porque a rede gera suas respostas é uma das principais críticas às RNAs, principalmente quando aplicadas em sistemas onde a segurança na operação seja um aspecto importante, tais como problemas de controle de usinas nucleares, controle do sistema de navegação de aeronaves, auxílio a cirurgias médicas, sistemas de diagnóstico médico e detecção de falhas mecânicas. Isto se deve ao fato do conhecimento está armazenado na topologia, nos pesos e quando usado no bias da rede, o que evidentemente dificulta a compreensão pelo usuário de como a rede encontrou a solução para um determinado problema. Segundo a literatura, a forma mais usual de se resolver esta deficiência é a partir da rede treinada extrair regras do tipo Se/Então. Note que, tais regras são bem mais aceitáveis pelos usuários por serem muito parecidas com a forma de representar o raciocínio humano. Logo, trata-se de uma maneira bastante plausível de se justificar as saídas apresentadas pela rede. Portanto, o objetivo principal deste trabalho é fazer um estudo comparativo entre diversos algoritmos, incluindo os quatro aqui propostos (destacando-se o Literal e o ProRulext), para extração de regras de redes MLP (Multilayer Perceptron) aplicadas à problemas de classificação de padrões e de previsão de séries temporais verificando qual(is) o(s) método(s) que obtém o conjunto de regras mais conciso e representativo das redes treinadas em cada um destes problemas