Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
BARREIROS, Daniel Bion |
Orientador(a): |
SOUZA, Renata Maria Cardoso Rodrigues de |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Programa de Pos Graduacao em Ciencia da Computacao
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/25077
|
Resumo: |
A Análise de Dados Simbólicos (ADS) é uma abordagem da área de inteligência computacional que visa desenvolver métodos para dados descritos por variáveis onde existem conjuntos de categorias, intervalos ou distribuições de probabilidade. O objetivo deste trabalho é estender um método probabilístico de agrupamento clássicos para dados simbólicos intervalares fazendo uso de funções de núcleo. A aplicação de funções de núcleo tem sido utilizada com sucesso no agrupamento para dados clássicos apresentando resultados positivos quando o conjunto de dados apresenta grupos não linearmente separáveis. No entanto, a literatura de ADS precisa de métodos probabilísticos para identificar grupos não linearmente separáveis. Para mostrar a eficácia do método proposto, foram realizados experimentos com conjuntos de dados intervalares reais, e conjuntos sintéticos fazendo uso de simulações Monte Carlo. Também se apresenta um estudo comparando o método proposto com diferentes algoritmos de agrupamento da literatura através de estatísticas que evidenciam o desempenho superior do método proposto em determinados casos. |