Detalhes bibliográficos
Ano de defesa: |
2011 |
Autor(a) principal: |
Miguel da Silva, Gleybson |
Orientador(a): |
Napoleão Rabelo, Marcos |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/7305
|
Resumo: |
Neste trabalho de dissertação, estudaremos uma modelagem de uma equação diferencial parcial com retardo em um aberto de Rn com condição de fronteira de Dirichlet, dando origem a uma equação diferencial funcional com retardo abstrata, onde a parte linear gera um C0-semigrupo de contrações em um espaço de Banach e a parte não linear satisfaz uma condição Lipschitz com respeito a uma norma apropriada. Para isto, estudamos teoria de distribuições, semigrupos, espaços de Sobolev, operador Laplaciano em um aberto de Rn. Estudamos também existência e unicidade de solução fraca do problema de valor inicial com condição inicial em um espaço de fase |