Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Moraes, Lailson Bandeira de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/12388
|
Resumo: |
Um estágio importante de pré-processamento em sistemas de aprendizagem de máquina é a redução de dimensionalidade, que tem como objetivo produzir representações compactas de padrões de alta dimensionalidade. Em aplicações de visão computacional, estes padrões são tipicamente imagens, que são representadas por matrizes bi-dimensionais. Entretanto, técnicas tradicionais para redução de dimensionalidade foram projetadas para lidar apenas com vetores, o que as torna opções inadequadas para processar dados bi-dimensionais. Outro problema com as abordagens tradicionais para redução de dimensionalidade é que elas operam apenas de forma totalmente não-supervisionada ou totalmente supervisionada, o que limita sua eficiência em cenários onde dados supervisionados estão disponíveis apenas para um subconjunto das amostras. Estas situações são cada vez mais comuns por que em várias aplicações modernas é fácil produzir dados brutos, mas é geralmente difícil rotulá-los. Neste estudo, propomos três métodos para redução de dimensionalidade capazes de contornar estas limitações: Two-dimensional Semi-supervised Dimensionality Reduction (2DSSDR), Two-dimensional Discriminant Principal Component Analysis (2D-DPCA), e Twodimensional Semi-supervised Local Fisher Discriminant Analysis (2D-SELF). Eles operam diretamente com dados bi-dimensionais e também podem explorar informação supervisionada, mesmo que ela esteja disponível apenas para uma pequena parte das amostras. Adicionalmente, um método completamente supervisionado, o Two-dimensional Local Fisher Discriminant Analysis (2D-LFDA) é proposto também. Os métodos são definidos nos termos de um framework bi-dimensional, que foi igualmente criado neste estudo. O framework é capaz de descrever métodos para redução de dimensionalidade baseados em dispersão de forma geral e pode ser usado para derivar outras técnicas bi-dimensionais no futuro. Resultados experimentais mostraram que, como esperado, os novos métodos são mais rápidos e estáveis que as técnicas existentes. Além disto, 2D-SSDR, 2D-SELF, e 2D-LFDA obtiveram taxas de erro competitivas na maior parte das vezes quando comparadas aos métodos tradicionais. Desta forma, estas três técnicas podem ser vistas como alternativas viáveis aos métodos existentes para redução de dimensionalidade. |