Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
MONSALVE, Johanna Gil |
Orientador(a): |
RODRIGUES, Alexandre Ricalde |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Programa de Pos Graduacao em Fisica
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/22658
|
Resumo: |
Estudos recentes mostram que o nanocompósito Fe3O4/PANI tem propriedades magnéticas interessantes, como oscilações sustentadas na magnetização, que foram interpretadas como o resultado de uma reação química oscilante que faz que uma fração do conteúdo de magnetita seja transformada em maghemita e vice-versa [1]. Neste trabalho fizemos estudos adicionais. Variamos parâmetros como temperatura, tipo e concentração de ácidos, além de usar como ponto de partida óxidos comerciais e de tamanho maior. Produzimos ainda nanocompósitos Fe2O3/PANI sob as mesmas condições usando Fe2O3 ao invés de Fe3O4. Para os nanocompósitos produzidos estudamos as propriedades magnéticas e estruturais e a cinética química da reação através da magnetização da solução precursora. Os nanocompósitos Fe3O4/PANI e Fe2O3/PANI foram preparados sob UV (365nm) a diferentes tempos de exposição e sob aquecimento (40, 60 e 80 °C), mediante a dispersão das nanopartículas de magnetita e maghemita em uma solução ácida de anilina. Para o estudo de suas propriedades foram usadas medidas de difração de raios X (DRX), análises termogravimétricas e de calorimetria de varredura diferencial (TGA e DSC). Para a caracterização magnética foi usado um magnetômetro de amostra vibrante (VSM) para obter curvas de histereses, plot de Henkel, verificação das mudanças na transição de Verwey e estudo da cinética química a partir da magnetização da solução líquida precursora dos nanocompósitos. Este último resultado foi analisado segundo modelo presa-predador de Lotka Volterra, um modelo simples, qualitativo, para esse sistema relativamente complexo e caótico. As curvas de histerese dos nanocompósitos sintetizados a 40 ºC mostraram oscilações na magnetização; enquanto que para 60 e 80 °C sob UV mostraram um decréscimo acentuado na magnetização máxima com o tempo de reação. As curvas do plot de Henkel mostraram que predominam efeitos de interação de natureza desmagnetizante. Foi observada a transição Verwey, mas deslocada da temperatura típica para os nanocompósitos sintetizados a 40 ºC, sugerindo que isso seja uma evidência das mudanças do número de oxidação do Fe provocados pela polimerização e radiação UV. Finalmente, usando o modelo Lotka-Volterra e suas propriedades matemáticas intrínsecas, verificamos o efeito nos parâmetros do modelo provocados pela mudança de alguns parâmetros importantes da reação. A caracterização estrutural mediante DRX mostraram que todas as nanopartículas são cristalinas exceto para as amostras de 80 ºC após de 1 h de reação. Os difratogramas para as amostras de Fe3O4/PANI tratadas a 60 ºC mostraram um deslocamento dos picos característicos indicando a transformação magnetita/maghemita/magnetita. Aparece também uma nova fase cristalina, a qual foi indexada como hematita. Por outro lado, não há variações muito significativas do tamanho de cristalito para Fe3O4/PANI, enquanto que para os nanocompósitos Fe2O3/PANI tratados a 60 ºC há um leve aumento no tamanho de cristalito com o tempo de síntese, assim como com o aumento na temperatura. A análise TGA e DSC mostrou que a polimerização é favorecida pelo calor e pelo tempo de reação. Além disso, conforme o esperado pelo modelo proposto por A. C. V de Araújo e col. [1], a polimerização para os nanocompósitos Fe2O3/PANI é mais acelerada que Fe3O4/PANI. |