Detalhes bibliográficos
Ano de defesa: |
2022 |
Autor(a) principal: |
SILVA, Izabelly Cristina Nascimento |
Orientador(a): |
LEANDRO, Eduardo Shirlippe Goes |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Programa de Pos Graduacao em Matematica
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/47680
|
Resumo: |
O objetivo deste trabalho é fazer uma análise da estabilidade linear de equilíbrios relativos formados por dois triângulos equiláteros. Esses tipos de equilíbrios relativos são divididos em dois casos: triângulos equiláteros concêntricos homotéticos e triângulos equiláteros concêntri- cos onde um é a rotação de 2π3 do outro. Mais especificamente, temos os primeiros três corpos fixos nos vértices de um triângulo equilátero inscrito em uma circunferência de raio 1 e que possuem massas iguais a 1. As posições dos outros três corpos estão fixas nos vértices do outro triângulo equilátero, inscrito em uma circunferência de raio r de mesmo centro e com massas iguais a m. Obtemos equações que fornecem os valores da massa m em função do raio r e, através de mudanças de variáveis adequadas e da utilização da técnica de Vincent, conhecemos os intervalos onde temos equilíbrios relativos. Munidos destes resultados prelimi- nares, utilizamos a técnica onde se deduz a fatoração do polinômio de estabilidade de cada um dos casos. Essa técnica é uma aplicação da teoria de representação de grupos e é usada para obter fórmulas explícitas para os autovalores dos equilíbrios relativos que, juntamente com condições para a estabilidade e a técnica de Vincent, permite obter conclusões significativas sobre a estabilidade linear de cada problema. No caso dos triângulos equiláteros concêntricos homotéticos, conseguimos concluir a instabilidade dos equilíbrios relativos para qualquer valor de r onde a massa m > 0. No caso dos dois triângulos equiláteros concêntricos rotacionados, concluímos a instabilidade dos equilíbrios relativos para qualquer valor de r onde m > 0, ex- ceto em dois pequenos intervalos, onde nada conseguimos concluir a respeito da estabilidade linear. |