Algoritmos de calibração e segmentação de trajetórias de objetos móveis com critérios não-supervisionado e semi-supervisionado

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: SOARES JÚNIOR, Amílcar
Orientador(a): TIMES, Valéria Cesário
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Programa de Pos Graduacao em Ciencia da Computacao
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/19518
Resumo: A popularização de tecnologias de captura de dados geolocalizados aumentou a quantidade de dados de trajetórias disponível para análise. Trajetórias de objetos móveis são geradas a partir das posições de um objeto que se move durante um certo intervalo de tempo no espaço geográfico. Para diversas aplicações é necessário que as trajetórias sejam divididas em partições menores, denominadas segmentos, que representam algum comportamento relevante para a aplicação. A literatura reporta diversos trabalhos que propõem a segmentação de trajetórias. Entretanto, pouco se discute a respeito de quais algoritmos são mais adequados para um domínio ou quais valores de parâmetros de entrada fazem com que um algoritmo obtenha o melhor desempenho neste mesmo domínio. A grande maioria dos algoritmos de segmentação de trajetórias utiliza critérios pré-definidos para realizar esta tarefa. Poucos trabalhos procuram utilizar critérios nos quais não se sabe a priori que tipos de segmentos são gerados, sendo esta questão pouco explorada na literatura. Outra questão em aberto é o uso de exemplos para induzir um algoritmo de segmentação a encontrar segmentos semelhantes a estes exemplos em outras trajetórias. Esta proposta de tese objetiva resolver estas questões. Primeiro, são propostos os métodos GEnetic Algorithm based on Roc analysis (GEAR) e o Iterated F-Race for Trajectory Segmentation Algorithms (I/F-Race-TSA), que são métodos para auxiliar na escolha da melhor configuração (i.e. valores de parâmetros de entrada) de algoritmos de segmentação de trajetórias. Segundo, é proposto o Greedy Randomized Adaptive Search Procedure for Unsupervised Trajectory Segmentation (GRASP-UTS), com o objetivo de resolver o problema de segmentação de trajetórias quando o critério de segmentação não é previamente definido. Por último, propomos o GRASP for Semi-supervised Trajectory Segmentation (GRASP-SemTS). O GRASP-SemTS usa exemplos para induzir a tarefa de segmentação a encontrar segmentos semelhantes em outras trajetórias. Foram conduzidos experimentos com os métodos e algoritmos propostos para domínios distintos e para trajetórias reais de objetos móveis. Os resultados mostraram que ambos os métodos GEAR e I/F-Race-TSA foram capazes de calibrar automaticamente os parâmetros de entrada de algoritmos de segmentação de trajetórias para um dado domínio de aplicação. Os algoritmos GRASP-UTS e GRASP-SemTS obtiveram melhor desempenho quando comparados a outros algoritmos de segmentação de trajetórias da literatura contribuindo assim com importantes resultados para a área.