Essays on data transformation and regression analysis
Ano de defesa: | 2017 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
Universidade Federal de Pernambuco
UFPE Brasil Programa de Pos Graduacao em Estatistica |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufpe.br/handle/123456789/24585 |
Resumo: | Na presente tese de doutorado, apresentamos estimadores dos parâmetros que indexam as transformações de Manly e Box-Cox, usadas para transformar a variável resposta do modelo de regressão linear, e também testes de hipóteses. A tese é composta por quatro capítulos. No Capítulo 2, desenvolvemos dois testes escore para a transformação de Box-Cox e dois testes escore para a transformação de Manly (Ts e Ts0), para estimar os parâmetros das transformações. A principal desvantagem da transformação de Box-Cox é que ela só pode ser aplicada a dados não negativos. Por outro lado, a transformação de Manly pode ser aplicada a qualquer dado real. Utilizamos simulações de Monte Carlo para avaliarmos os desempenhos dos estimadores e testes propostos. O principal resultado é que o teste Ts teve melhor desempenho que o teste Ts0, tanto em tamanho quanto em poder. No Capítulo 3 apresentamos refinamentos para os testes escore desenvolvidos no Capítulo 2 usando o fast double bootstrap. Seu desempenho foi avaliado via simulações de Monte Carlo. O resultado principal é que o teste fast double bootstrap é superior ao teste bootstrap clássico. No Capítulo 4 propusemos sete estimadores não-paramétricos para estimar os parâmetros que indexam as transformações de Box-Cox e Manly, com base em testes de normalidade. Realizamos simulações de Monte Carlo em três casos. Comparamos os desempenhos dos estimadores não-paramétricos com o do estimador de máxima verosimilhança (EMV). No terceiro caso, pelo menos um estimador não-paramétrico apresenta desempenho superior ao EMV. |