Investigação histórica referente à base algébrica das construções geométricas com régua e compasso: o trabalho de Pierre Laurent Wantzel

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: BARBOSA, João Paulo Carneiro
Orientador(a): ASSIS NETO, Fernando Raul de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/4052
Resumo: Os problemas de duplicar o cubo e a trissectar o ângulo com a utilização exclusiva da régua e do compasso motivou os matemáticos desde a antiguidade até meados do século XIX. Somente resolvidos por completo em 1837 pelo matemático francês Pierre Laurent Wantzel, tais problemas foram abordados de diferentes modos ao longo da História da Matemática, os quais edificaram o desenvolvimento de boa parte da Matemática, especialmente da Álgebra. Nesta dissertação propomos uma reconstrução histórica de uma parte desse desenvolvimento; mais precisamente de três períodos: a origem dos problemas e da restrição a régua e ao compasso na civilização grega, as contribuições de Descartes no século XVII e a solução dos problemas no século XIX. Em nossa reconstrução destacamos as relações entre os problemas geométricos da duplicação do cubo e da trissecção do ângulo e suas respectivas soluções algébricas