Bi-clustering de Dados Genéticos Binários Baseado em Modelos de Classificação Logística

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: Claudia da Rocha Rego Monteiro, Carla
Orientador(a): Silva Guimarães, Katia
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/6991
Resumo: Informações de interações de proteínas são fundamentais para a compreensão dos processos celulares. Por esta razão, várias abordagens têm sido propostas para inferir sobre pares de proteínas de redes de todos os tipos de dados biológicos. Nesta tese é proposto um método de bi-clustering, Lbic, baseado num modelo de classificação logística, para analisar dados biológicos binários. O Lbic é comparado com outros dois métodos de bi-clustering apresentados na literatura, mostrando melhores resultados. Seu desempenho também é comparado àqueles de um método supervisionado, análise de correlação canônica com Kernel, aplicado aos mesmos conjuntos de dados. Os resultados mostram que o Lbic alcança desempenho superior aos da aborgadem supervisionada treinada com até 25% do conhecimento da rede alvo