Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
MELO, Rosangela Maria de |
Orientador(a): |
MACIEL, Paulo Romero Martins |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Programa de Pos Graduacao em Ciencia da Computacao
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/25226
|
Resumo: |
Durante vários anos, os sistemas de computação em nuvem vem gerando um debate e interesse dentro das corporações de TI. Estes ambientes de computação em nuvem fornecem sistemas de armazenamento e processamento que são adaptáveis, eficientes e simples, permitindo assim modificações na infraestrutura de forma rápida, de acordo com a variação da carga de trabalho. Organizações de qualquer tamanho e tipo estão migrando para nuvem suportando soluções baseadas na Web. Devido às vantagens do modelo de pay-per-use e fatores de escalabilidade, serviços como o de Streaming de Vídeo e o MBaaS OpenMobester, dependem fortemente dessas infraestruturas de nuvem para oferecer uma grande variedade de conteúdos de multimídia e armazenamento de dados dos dispositivos móveis. Recentes eventos de falha em serviços de Streaming de Vídeo, demonstraram a importância fundamental da manutenção da alta disponibilidade em infraestruturas de computação em nuvem. Um dos métodos utilizados para identificar as tendências de ocorrências de falhas em sistemas computacionais, ocorre por meio da aplicação de estratégias de análise de sensibilidade. Cada estratégia de análise de sensibilidade pode obter um ranking diferenciado, desse modo sugerimos a utilização para avaliação dos sistemas computacionais, de mais de uma estratégia, com o objetivo de obtermos alta confiabilidade desses sistemas. Esta tese propõe uma metodologia aplicada no domínio dos sistemas computacionais, em particular na computação em nuvem, combinando a proposição e adaptação de estratégias de análise de sensibilidade com métodos já existentes, realizando uma comparação entre elas, com o propósito de estabelecer um índice de sensibilidade a partir da atribuição de pesos, para as posições que os parâmetros ocupam em cada estratégia. Pretende-se obter um ranking coerente e com a minimização das discrepâncias entre as estratégias, visando identificar os principais pontos que requerem melhoria na disponibilidade desses ambientes. A metodologia baseia-se na utilização de estratégias de análise de sensibilidade, conjuntamente com a modelagem hierárquica, e com os modelos para representação de mecanismos de redundância visando atuar na performance do sistema. A metodologia foi testada ao longo de estudos de casos distintos, no serviço de Streaming de Vídeo e no serviço MBaaS OpenMobester, desde o nível de infraestrutura básica até a infraestrustrura com redundância. Os estudos de casos mostram que a abordagem proposta é útil para guiar os provedores de serviço de nuvem no processo de tomada de decisões, especialmente para ajustes eventuais e melhorias arquiteturais no serviço. |