SYMARMA: Um modelo dinâmico para dados temporais sob distribuição simétrica condicional

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Quintas Souto Maior, Vinicius
Orientador(a): José de Azevedo Cysneiros, Francisco
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/6665
Resumo: Modelos gaussianos de séries temporais ARMA têm sido largamente utilizados na literatura. Benjamin et al. (2003) estenderam estes modelos para variáveis pertencente a família de distribuição exponencial. Nesta mesma linha, Rocha e Cribari-Neto (2009) propuseram um modelo de série temporal para a classe de distribuições Beta. Nesse sentido, nós propomos o modelo autorregressivo de médias móveis simétrico (SYMARMA), um modelo dinâmico para variáveis aleatórias pertencentes à classe de distribuições simétricas que inclui tanto a dinâmica autorregressiva e de média móveis, como também permite inserir regressores no modelo. O modelo SYMARMA é construído a partir da classe de regressão simétrica só que agora, na especificação da média, temos uma componente adicional com termos autoregressivos e de médias móveis incluídos aditivamente. A estimação dos parâmetros do modelo SYMARMA é feita através da maximização do logaritmo da função de verossimilhança condicional usando um algoritmo de otimização não-linear, em particular utilizamos o algoritmo escore de Fisher. Estudos de simulação foram realizados para avaliar o desempenho e o comportamento do estimador de máxima verossimilhança condicional para os parâmetros do modelo e, para também avaliar o efeito da presença de outlier aditivo ou de inovação no ajuste e na previsão de observações futuras. Discutimos testes de hipóteses para os parâmetros do modelo. Aplicações com dados reais também serão apresentadas e discutidas