Aritmética das curvas algébricas

Detalhes bibliográficos
Ano de defesa: 2006
Autor(a) principal: José Gondim Neves, Rodrigo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/7267
Resumo: Esta dissertação tem como principal objetivo expor o bem sucedido projeto de entender a aritmética das curvas algébricas a partir de sua geometria. Estaremos interessados em características qualitativas do conjunto dos pontos K-racionais (K corpo de números) da curva tais como existência, finitude e estrutura algébrica. Para curvas de gênero zero, mostramos o principio local-global (para quádricas) que garante a existência de um ponto em K baseado na existência de pontos em todos seus completamentos . Para curvas de gênero um que possuem um ponto K-racional, o método da tangente e da secante fornece ao conjunto dos pontos K-racionais da curva uma estrutura algébrico-geométrica de grupo abeliano, o principal resultado é o teorema de Mordell-Weil que garante que tal grupo é finitamente gerado, mostraremos mais geralmente o teorema de Mordell-Weil para variedades abelianas. A última classe de curvas que iremos considerar são as curvas de gênero maior ou igual a dois, para tais curvas o conjunto dos pontos K-racionais é sempre finito. Este é o teorema de Faltings (que não daremos uma demonstração completa)