Avaliação das perdas de água e solo no semiárido paraibano mediante chuva simulada e modelagem hidrossedimentológica

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: Santos, José Yure Gomes dos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal da Paraí­ba
BR
Engenharia Cívil e Ambiental
Programa de Pós-Graduação em Engenharia Urbana e Ambiental
UFPB
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpb.br/jspui/handle/tede/5454
Resumo: The determination of water losses by runoff and soil is essential for understanding and quantifying the runoff-erosion processes. The use of simulated rainfall in order to obtain runoff-erosion data provides simulations under conditions that cannot always be naturally represented in the field. Thus, this study aims to evaluate the water and soil losses on erosion plots in the semiarid region of Paraíba state through simulated rainfall and runoff-erosion modeling techniques under different vegetation covers and soil moisture conditions. Thus, simulated rainfalls were performed with a mean intensity of 53 mm/h on plots installed in São João do Cariri Experimental Basin with surface cover such as native vegetation, deforested, corn and beans, which were. The simulated rainfall was applied under different soil moisture conditions, as follows: (a) dry condition with 60 min duration, (b) wet condition 24 hours after the end of the simulation in the dry condition, with 30 min duration, (c) very wet conditions 30 min after the end of the simulation in wet condition, with 30 min duration. The data of water and soil losses obtained from rainfall simulation on plots under different cover and moisture conditions were modeled using the WESP runoff-erosion model. The collected runoff-erosion data from the erosion plots showed that the runoff in all types of cover was increased according to the increasing of soil moisture. The sediment yield was higher in the dry moisture condition, because they had 60 min of duration. The values of runoff and sediment yield under wet and very wet conditions were similar in all type of surface covers. The native cover showed to be effective in protecting the soil, with very significant reductions in relation to other types of coverage. The corn and beans have showed to be ineffective to protect the soil with greater water and soil losses than those observed for the bare plots. Regarding to the runoff-erosion modeling processes on the erosion plots under different surface cover and moisture conditions, the WESP model presented excellent results when observed and simulated runoff and sediment yield data were compared.