Efeito da salinidade em células do sistema imune do ouriço-do-mar Echinometra lucunter
Ano de defesa: | 2016 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal da Paraíba
Brasil Biologia Celular e Molecular Programa de Pós-Graduação em Biologia Celular e Molecular UFPB |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufpb.br/jspui/handle/tede/9456 |
Resumo: | Human activities have caused climate changes and altered the salinity of the oceans. Salinity is one of the factors that limit the distribution and the survival of marine organisms. Coelomocytes are the immune system cells of the echinoderms and have been studied as biomarkers in stress situations. The aim of the present study was to investigate the effect of the salinity in the immune system cells of the tropical sea urchin Echinometra lucunter. Animals were collected in João Pessoa coast (Brazilian Northeast). Animals or coelomocytes were exposed to different salinity (25‰ to 45‰) and phagocytic parameters, production of reactive oxygen species (ROS), mitochondrial activity and ABC transporter activity analyzed. The phagocytic parameters did not change when animals or cells were exposed to low or high salinity in any time intervals monitored. However, our data showed an increase in the coelomocytes concentration when animals were exposed to 25‰. ROS levels were higher when cells were incubated at 25‰ and lower when cells were cultured at 45‰. We noted a loss of the mitochondrial inner membrane potential when coelomocytes were incubated at 45‰. The activity of ABC transporters decreased when cells were incubated at low salinity and increased when cells were incubated at high salinity. Our work shows that the immune system of the tropical sea urchins E. lucunter tolerates salinity changes from 25‰ to 45‰ and suggests two cellular parameters (ROS levels and ABC transporters activity) as potential biomarkers on the monitoring of the impact of environmental salinity changes. |