A study on the generation of explanations based on ontologies: a case study in mHealth

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Cavaco, Isabela Nascimento
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal da Paraíba
Brasil
Informática
Programa de Pós-Graduação em Informática
UFPB
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpb.br/jspui/handle/123456789/32096
Resumo: While mobile health (mHealth) applications provide a proper way to continuously assess data about the health conditions of their users, machine learning (ML) is the main technique used to process such data by means of inductive reasoning. However, ML algorithms do not usually give any explanation concerning the rationale of their produced outputs due to the black-box feature of such algorithms. This study analyzed 120 mHealth applications to create an integrated ontology that represents the health condition of mobile users and can be used as background knowledge to generate explanations for inductive reasoning. The integrated ontology involved several quality of life (QoL) dimensions (e.g., diet, physical activity, emotional, etc.), enabling the specification of a holistic process of reasoning that can improve the effectiveness of interventions. Therefore, the main contributions of this study are (1) the proposal of a strategy to create background knowledge for mHealth applications that support holistic reasoning and explanations regarding the results obtained by means of inductive reasoning, (2) evaluation of a description logics based approach to generate explanations using a simplified version of the ontology, and (3) discussions about important elements that can affect the readability and accuracy of explanations, such as the use of unnamed classes and configuration of the explanation algorithms.