Análise evolutiva das subunidades ligadoras de substrato presentes no sistema de osmoproteção em procariotos

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Coutinho, Tarcisio José Domingos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal da Paraí­ba
Brasil
Biologia Celular e Molecular
Programa de Pós-Graduação em Biologia Celular e Molecular
UFPB
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpb.br/jspui/handle/tede/3654
Resumo: Substrate-binding subunits are very important components of the solute importation system, known as the osmoprotectant system, which consists of a membrane protein belonging to the ABC superfamily. These molecules recognize specific substrates that have different physiological roles in prokaryotes, i.e. roles that contribute to the survival of these organisms in environments with high concentrations of salt. Using MEGA 5.05 software, this study performed a phylogenetic analysis of 431 nucleotide sequences of these subunits, orthologous to each other, collected from the database contained on the website http://www.genome.jp/kegg/. As a result of this analysis, phylogenetic trees were generated that clearly demonstrated that there was a horizontal transfer of some genes due to the sharing by different organisms. Also, two probable ancestral sequences were generated that showed homology with permeases that transport choline, glycine betaine and carnitine, which are trimethylamines currently present in various prokaryotes. Therefore, this system probably arose in prokaryotic organisms with the basic function of capturing nutrients, and by performing this basal function of being shared with other organisms, was fixed to the genome. However, because of the diversification of habitats by the prokaryotes, this system contributed decisively to the adaptation of these organisms to different environments, especially environments that had a high salt concentration; thus, acting and being currently characterized as a system of osmoprotection.