Reduções em Família e Multiplicidades Mistas
Ano de defesa: | 2009 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal da Paraíba
BR Matemática Programa de Pós-Graduação em Matemática UFPB |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufpb.br/jspui/handle/tede/7361 |
Resumo: | Let (R,m) be a Noetherian local ring. Mixed multiplicities of finitely many m-primary ideals were first defined by J. Risler and B. Teissier in [Teissier] and they proved that these could be described as the usual Hilbert-Samuel multiplicity of the ideal generated by an appropriated superficial sequence. This result was later generalized by D. Rees in [Rees], who first introduced the notion of joint reduction for a family of ideals and proved that the mixed multiplicities of a family of m-primary ideals could be described as the Hilbert-Samuel multiplicity of the ideal generated by a suitable joint reduction. This theorem is known as Rees mixed multiplicity theorem and it is a crucial result in the theory of mixed multiplicities for m-primary ideals. The converse of Rees theorem was given by I. Swanson in her Ph. D. thesis (see [Swanson]). In this work, we give a detailed proof of all of the above mentioned results. |