Sistemas curvos de grafeno e esferas fuzzy

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Silva, Deigivan da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal da Paraíba
Brasil
Física
Programa de Pós-Graduação em Física
UFPB
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpb.br/jspui/handle/tede/9486
Resumo: In this work, we developed a complete study on the relativistic Landau model and non-commutative geometry, the latter was derived from level projection, in order to describe curved graphene systems. In developing of the theory, we address the problem of the eigenvalues from the relativistic Dirac-Landau operador on the sphere with a magnetic monopole in its center. The relativistic fuzzy spheres are introduced using the eigenstates of the relativistic Landau levels and we compare it with non-relativistic cases. Under mass deformation, the fuzzy spheres relative to the relativistic symmetric Landau levels change their sizes, however zero-modes there are no variation of size for the corresponding fuzzy sphere. Consecutively we verify that the relativistic Landau model and non-relativistic system of Pauli-Schr odinger are related by gauge transformation SU(2). And nally, the application of the whole theoretical graphene's framework show a simmetric spectrum with respect to its zero energy, and it maintains itself under mass deformation. On the other hand, the in uence of the mass parameters M 6= 0 on the four fuzzy spheres (two for each valley) is such that, if n 6= 0, two of them are enlarged and the other two are diminished, but for n = 0 the fuzzy spheres (at M) do not change their sizes.