Mean Curvature Flow Solitons in a GRW Spacetime and CMC Free Boundary Hypersurfaces in Rotational Domains
Ano de defesa: | 2024 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
Universidade Federal da Paraíba
Brasil Matemática Programa de Pós-Graduação em Matemática UFPB |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufpb.br/jspui/handle/123456789/32672 |
Resumo: | In this work, we study two themes. First, we study a n-dimensional spacelike mean curvature flow solitons related to the closed conformal timelike vector field K = f(t)∂t (t ∈ I ⊂ R) which is globally defined on an generalized Robertson-Walker (GRW) spacetime −I×fMn+p with warping function f ∈ C∞(I) and Riemannian fiber Mn+p, these are particular cases of trapped submanifolds, and we obtain rigidity and non-existence results for this submanifold class via applications of suitable generalized maximum principles and under certain constraints on f and on the curvatures of Mn+p. Then, we work with the existence and uniqueness of free boundary constant mean curvature hypersurfaces in rotational domains, these are domains whose boundary is generated by a rotation of a graph. We classify the CMC free boundary hypersurfaces as topological disks or annulus, under some conditions in the generatrix function and a gap condition on the umbilicity tensor. |