A Transformada Discreta de Fourier no círculo finito ℤ/nℤ

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Farias Filho, Antonio Pereira de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal da Paraíba
Brasil
Matemática
Mestrado Profissional em Matemática
UFPB
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpb.br/jspui/handle/tede/9429
Resumo: We will do here a theoretical study of the Discrete Fourier Transform on the finite circle ℤ/nℤ. Our main objective is to see if we can get properties analogous to those found in the Fourier transform for the continuous case. In this work we show that ℤ/nℤ has a ring structure, providing conditions for the development of extensively discussed topics in arithmetic, for example, The Chinese Remainder Theorem, Euler’s Phi Function and primitive roots, themes these to be dealt with in first chapter. The main subject of this study is developed in the second chapter, which define the space L2(ℤ/nℤ) and prove that this is a finite-dimensional inner product vector space, with an orthonormal basis. This fact is of utmost importance when we are determining the matrix and demonstrating the properties of the discrete Fourier transform. We will also make geometric interpretations of the Chinese Remainder Theorem and the finite circle ℤ/nℤ as well as give a graphical representation of the DFT of some functions that calculate. During the development of this study we will make recurrent use of definitions and results treated in Arithmetic, Algebra and Linear Algebra.