Aspectos geométricos da molécula de fulereno em referenciais não-inerciais
Ano de defesa: | 2015 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal da Paraíba
Brasil Física Programa de Pós-Graduação em Física UFPB |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufpb.br/jspui/handle/tede/9557 |
Resumo: | In this thesis we study the dynamics of charge carriers, and the electronic properties, of the C60 fullerene molecule. Characterizing it by a geometric bias. In inertial reference systems and when we have your material under rotation content. Initially we discussed the scientific advent of carbon allotropes, and the importance of modelling its derivates at low energies. We show that at low energies, the graphene - the two-dimensional carbon allotrope form - can be described for a non-massive theory of free fermions. At a second moment, we extended the nonmassive free fermions theory for the C60 molecule. Assuming the hexagonal graphene network can be entered in fullerene when we introduce topological defects. A brief study of topological defects in condensed matter was done. And soon after, we made a description these defects via a non-Euclidean geometry. Showing how the charge carriers in the network see the defects like gauge fields. Then we began to expose the results of this thesis. First we assume the fullerene by a two-dimensional spherical metric with defects, containing a fictitious t’Hooft-Polyakov monopole in its center. TheC60 is still subjected to the action of an Aharonov-Bohm flux arising of a magnetic wire running through its poles. So we get the spectrum, and the prediction of a persistent current in the molecule. Finally we return to the analysis of the molecule, now with your content of matter under rotation. For this, we studied a metric Gödel-type with spherical symmetry. We discussed the problem of causality and obtain the spectrum and the persistent current in terms of the vorticity (W) of spacetime. |