Testes espectroscópicos de modificações da gravitação em átomos muônicos

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Matias, João Elias Juvito
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal da Paraíba
Brasil
Física
Programa de Pós-Graduação em Física
UFPB
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpb.br/jspui/handle/123456789/34163
Resumo: Several current models in Physics assume the existence of extra dimensions in order to solve certain theoretical challenges faced by the Standard Model, such as the hierarchy problem (the enormous difference in the intensity of the gravitational interaction compared to the magnitude of the other forces) and the search for a unification theory that includes gravity. In general, an important characteristic of extra-dimensional models is the prediction of amplification of the strength of the gravitational force at short distances. This peculiarity is of great interest from a phenomenological point of view because, in principle, it allows experimental examination of the existence of extra dimensions through laboratory tests of the inverse square law for the gravitational force. In this work, with the purpose of establishing experimental constraints for deviations of the gravitational interaction in subatomic domains, we will analyze recent spectroscopic data of muonic atoms. More specifically, we consider data on the 2P − 2S transition of muonic helium-4, muonic helium-3, muonic deuterium and muonic hydrogen. These atoms are produced in laboratories by replacing the electron with the muon. Since the mass of the muon is more than two hundred times greater than that of the electron, muonic atoms are suitable for probing modifications of gravitation in the atomic domain. We will compare our constraints with experimental limits previously determined from spectroscopic data of other atoms, such as electron hydrogen and antiproton helium. As we will see, our limits are the most stringent on the sub-picometer distance scale. We will also analyze the 2P3/2−2P1/2 transition of muonic helium-4, which depends on the fine structure of the atom. By studying the influence of the gravitational spin-orbit coupling on this transition, we will determine limits for deviations of the post-Newtonian potential associated with the gamma parameter of the Parameterized post-Newtonian formalism (PPN formalism).