K-theoretic version of Fourier-Mukai transforms between crepant resolutions of finite quotient singularities

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Giraldo, Ivan Junnior Serna
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal da Paraíba
Brasil
Matemática
Programa Associado de Pós-Graduação em Matemática
UFPB
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpb.br/jspui/handle/123456789/29951
Resumo: We study crepant resolutions of singularities C3/G, where G is a finite abelian subgroup of SL(3,C). Using derived category methods, Bridgeland, King and Reid proved that the Hilbert scheme of G-clusters (G-Hilb)(C3) is a crepant resolution. Following Craw-Ishii, we study the moduli spaces Mθ of θ-stable G-constellations, in particular, (G-Hilb)(C3) is a moduli space of this type for a suitable parameters in the GIT-parameter space, while all crepant resolutions are of the form Mθ for some θ. The GIT-parameter space is divided into chambers, and for parameters in adjacent chambers, theMθ spaces are Fourier-Mukai partners. Following Craw-Ishii we study how the Fourier-Mukai transform between partners can induce a change in the tautological line bundles. As an application, we study the case of C3/Z4. We outline the toric description of the singularity and its crepant resolution. Using Chern classes we determine the cohomological Fourier-Mukai transform between Fourier- Mukai partners, that are moduli spaces for adjacent chambers. In general, for the singularities C3/G, we also determine the cohomological Fourier- Mukai transform as a linear transformation between the cohomology rings.