Entropy-based client selection strategy for federated learning over vehicular network environment

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: SOUSA, John Lucas Rodrigues Portilho de lattes
Outros Autores: https://orcid.org/0000-0002-8035-5316
Orientador(a): CERQUEIRA, Eduardo Coelho lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Pará
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Elétrica
Departamento: Instituto de Tecnologia
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufpa.br/jspui/handle/2011/16769
Resumo: Aprendizado Federado (FL) surge como uma soluçao promissora para possibilitar o treinamento colaborativo de modelos para veículos autônomos, preservando a privacidade e abordando questões de sobrecarga de comunicaçao. A seleçao eficiente de clientes para participar do processo de treinamento permanece desafiadora, especialmente em cenários com heterogeneidade estatística da distribuição de dados e eventos de falha de clientes. A falha de clientes, um evento incontrolável durante o treinamento, reduz a precisão, a convergência e a velocidade. Esta dissertação de mestrado introduz mecanismos de seleção de clientes baseados em entropia para FL em ambientes de Redes Veiculares com falha de clientes e distribuições de dados não-IID. O método proposto é comparado a um mecanismo de seleção aleatória em cenários tanto IID quanto não-IID, bem como em cenários com quedas aleatórias de clientes. Os resultados demonstram que a seleção baseada em entropia supera outros métodos em relação à perda de treinamento, precisão e Area Sob a Curva ROC, especialmente em cenários com alta taxa de desistência de ´ clientes e dados não-IID. Esses achados destacam a importância de considerar dados de entropia para a seleção de clientes para abordar os desafios impostos pela falha de clientes e pela heterogeneidade estatística no FL sobre Redes Veiculares.