Análise de desempenho de algoritmos para classificação de sequências representando faltas do tipo curto-circuito em linhas de transmissão de energia elétrica

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: FREIRE, Jean Carlos Arouche lattes
Orientador(a): CASTRO, Adriana Rosa Garcez lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Pará
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Elétrica
Departamento: Instituto de Tecnologia
País: Brasil
Palavras-chave em Português:
HMM
Área do conhecimento CNPq:
Link de acesso: http://repositorio.ufpa.br:8080/jspui/handle/2011/12282
Resumo: A manutenção da qualidade de energia em sistemas elétricos de potência depende do tratamento dos principais distúrbios que possam surgir em sua geração, transmissão e distribuição. Dentro deste contexto, muitos estudos vêm sendo desenvolvidos com o objetivo de realizar a detecção e classificação de faltas do tipo curto-circuito em sistemas elétricos através da análise do comportamento do sinal elétrico. Os sistemas de classificação de faltas em linha de transmissão podem ser divididos em dois tipos: sistemas de classificação on-line e pós-falta. No cenário pósfalta as sequências do sinal a serem avaliadas para a classificação possuem comprimento (duração) variável. Na classificação de sequências é possível utilizar classificadores convencionais tais como Redes Neurais Artificiais, Máquinas de Vetores de Suporte, K-vizinhos mais próximos e Árvore de Decisão (Floresta aleatória). Nestes casos, o processo de classificação geralmente requer um pré-processamento das sequências ou um estágio de front end que converta os dados bruto em parâmetros sensíveis para alimentar o classificador, o que pode aumentar o custo computacional do sistema de classificação. Uma alternativa para este problema é a arquitetura de classificação de sequências baseada em quadros (FBSC - Frame Based Sequence Classification). O problema da arquitetura FBSC é que esta possui muitos graus de liberdade na concepção do modelo (front end mais classificador) devendo este ser avaliado usando um conjunto de dados completo e uma metodologia rigorosa para evitar conclusões tendenciosas. Considerando a importância do uso de metodologias para classificação de faltas do tipo curto-circuito eficientes e principalmente com baixo custo computacional, este trabalho apresenta os resultados do estudo desenvolvido de análise do algoritmo KNN (K-vizinhos mais próximo) associado a medida de similaridade de Alinhamento Temporal Dinâmico (DTW) e do algoritmo HMM (Modelo Oculto de Markov) para a tarefa de classificação de faltas. Estas duas técnicas permitem o uso direto dos dados sem a necessidade de utilização de front ends, além de possuírem a capacidade de poder tratar séries temporais multivariadas e de tamanho variável, que é o caso das sequências de sinais para o caso pós-falta. Para desenvolvimento dos dois sistemas propostos para classificação foram utilizados dados simulados de faltas do tipo curto-circuito oriundos da base de dados pública UFPAFaults. Para comparação de resultados com metodologias já apresentadas na literatura para o problema, foi também avaliada, para o mesmo banco de dados, a arquitetura FBSC. No caso da arquitetura FBSC, diferentes front ends e classificadores foram utilizados. A avaliação comparativa foi realizada a partir da medida de taxa de erro, custo computacional e testes estatísticos. Os resultados obtidos mostraram que o classificador baseado no HMM se mostrou mais adequado para o problema de classificação de faltas do tipo curto-circuito em linhas de transmissão.