Detecção e classificação de faltas em linhas de transmissão utilizando análise funcional e inteligência computacional

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: Andre de Souza Gomes
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/BUOS-99GHSW
Resumo: The transmission line is the most vulnerable element of the Electric Power System due to its great physical dimension. Several fault diagnosis algorithms have been proposed in the literature, especially methods that use signal analysis and computational intelligence. This work proposes a new modeling that functionally represents the transmission line phases. In the proposed model, the nominal behavior of voltage and current signals are projected onto a two-dimensional space, represented by a conic equation. The detection and classification strategy is developed from the analysis of the models parameters. The proposed methodology is evaluated using a set of simulated faults, obtained by varying the fault parameters. The results are satisfactory and demonstrate the viability of the proposed methodology to detect the moment of failure and your classification.