Um modelo bayesiano que auxilia na identificação de alunos com dificuldades na aprendizagem de programação de computadores

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: CAMPOS, Willys do Socorro Almeida de lattes
Orientador(a): REIS, Rodrigo Quites lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Pará
Programa de Pós-Graduação: Programa de Pós-Graduação em Computação Aplicada
Departamento: Núcleo de Desenvolvimento Amazônico em Engenharia - NDAE/Tucuruí
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.ufpa.br:8080/jspui/handle/2011/12576
Resumo: O aprendizado das disciplinas de programação de computadores sempre trouxe desafios para qualquer turma de alunos de Computação, devido às dificuldades ligadas ao seu aproveitamento. Esse cenário muito contribui para a desmotivação do aluno e, assim, no aumento da evasão dos cursos. Geralmente, os professores que atuam nestas disciplinas têm sinais acerca de quais alunos se tornarão bons programadores, porém é difícil detectar quais necessitam de ajuda no processo de aprendizagem. Esta dissertação propõe o uso de um modelo bayesiano que auxilia na identificação de alunos com dificuldades nas disciplinas de programação de computadores. A pesquisa utiliza uma abordagem mista, quanti e qualitativa. Um experimento, com caráter informal, foi realizado com alunos que estavam cursando disciplinas de programação. Esse conjunto de alunos, foi apresentado a cinco professores especialistas com o objetivo de identificar quais necessitariam de ajuda com a aprendizagem de programação. O mesmo conjunto foi apresentado ao modelo bayesiano. Os resultados mostraram que o modelo pode ajudar na identificação de alunos que apresentam dificuldades, com o potencial de contribuir no processo de aprendizagem.