Inteligência computacional aplicada à detecção e correção de outliers em séries temporais: estudo de caso em consumo de energia elétrica

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: MELO, Diemisom Carlos Romano de lattes
Orientador(a): CASTRO, Adriana Rosa Garcez lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Pará
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Elétrica
Departamento: Instituto de Tecnologia
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.ufpa.br/jspui/handle/2011/7675
Resumo: A previsão de consumo de energia elétrica é uma tarefa que requer modelos computacionais bastante acurados para que possam influenciar corretamente na tomada de decisão em usinas hidrelétricas e distribuidoras de energia. Estes modelos computacionais são implementados a partir de um conjunto de dados que deve representar fielmente o comportamento das variáveis. Porém, nesses conjuntos de dados é bastante comum a presença de outliers, que surgem devido a erros de leitura de sensores, erros no próprio sistema de processamento/armazenamento dos dados ou falhas no sistema de distribuição. Este trabalho propõe então uma nova metodologia baseada em Inteligência Computacional para detecção e correção de outliers em séries temporais de consumo de energia elétrica. Uma rede neural artificial auto-associativa é utilizada para detecção de outliers. Posteriormente, esta rede neural, em conjunto com um algoritmo genético, é utilizada para a correção dos outliers detectados. Esta abordagem foi aplicada a uma série temporal de consumo de Energia Elétrica no Estado do Pará. Os resultados obtidos demonstram a eficiência da metodologia proposta, que identificou e corrigiu todos os outliers virtuais introduzidos durante a fase de avaliação da metodologia.