Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
SILVA, Arilson Galdino da
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Orientador(a): |
CASTRO, Adriana Rosa Garcez
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal do Pará
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Engenharia Elétrica
|
Departamento: |
Instituto de Tecnologia
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://repositorio.ufpa.br:8080/jspui/handle/2011/12190
|
Resumo: |
O conhecimento acerca da amplitude do transbordamento dos leitos fluviais é extremamente necessário para determinação das áreas de risco. A cidade de Altamira-PA, localizada às margens do rio Xingu, vem sofrendo com casos extremos de cheias que tendem a provocar inundações, resultando em severos prejuízos para a sua população. Considerando o problema, este trabalho apresenta a proposta de um sistema de previsão de nível mensal do Rio Xingu baseado em Redes Neurais Artificiais Perceptron de Múltiplas Camadas. Para o desenvolvimento do sistema foram utilizados dados de precipitação na bacia e sub-bacias do Rio Xingu, e informações de Temperatura da Superfície do Mar (TSM) do período de 1979 a 2016. Os resultados satisfatórios obtidos demonstram a grande aplicabilidade das Redes Neurais Artificiais para o problema de previsão de cheias, visto que comparada a outras metodologias possuem maior precisão na busca de soluções para problemas não lineares. Para o tratamento e seleção das variáveis de entrada foi utilizada a abordagem de correlação, com o objetivo de melhorar a acurácia dos resultados, selecionando, assim, as melhores informações com suas respectivas defasagens, na qual são inseridas em três cenários de predição: modelo com dados de precipitação, modelo com informações de temperatura da superfície do mar e aplicação utilizando a junção de TSM com precipitação. Para mensurar a capacidade de predição dos métodos propostos, foram obtidos os valores Mean Square Error (MSE) e coeficiente de determinação (R²), para a melhor estratégia, empregando somente variáveis oceânicas, TSM, sendo respectivamente os valores 2,99x104 e 0,9991 considerando, principalmente, o tratamento dos valores de entrada da Rede Neural. |